Exercise 28

Prove the statement using the ε , δ definition of a limit.

$$\lim_{x\to -6^+} \sqrt[8]{6+x} = 0$$

Solution

According to Definition 4, proving this limit is logically equivalent to proving that

if $-6 < x < -6 + \delta$ then $\left|\sqrt[8]{6+x} - 0\right| < \varepsilon$

for all positive ε . Start by working backwards, looking for a number δ that satisfies $-6 < x < -6 + \delta$, or $0 < x + 6 < \delta$.

$$\left| \sqrt[8]{6+x} - 0 \right| < \varepsilon$$
$$\left| \sqrt[8]{6+x} \right| < \varepsilon$$
$$\sqrt[8]{6+x} < \varepsilon$$
$$\left(\sqrt[8]{6+x} \right)^8 < (\varepsilon)^8$$
$$6+x < \varepsilon^8$$

Choose $\delta = \varepsilon^8$. Now, assuming that $6 + x < \delta$,

$$\begin{vmatrix} \sqrt[8]{6+x} - 0 \end{vmatrix} = \begin{vmatrix} \sqrt[8]{6+x} \end{vmatrix}$$
$$= \sqrt[8]{6+x}$$
$$< \sqrt[8]{\delta}$$
$$= \sqrt[8]{\varepsilon^8}$$
$$= \varepsilon$$

Therefore, by the precise definition of a limit,

$$\lim_{x \to -6^+} \sqrt[8]{6+x} = 0.$$