Exercise 28

Prove the statement using the ε, δ definition of a limit.

$$
\lim _{x \rightarrow-6^{+}} \sqrt[8]{6+x}=0
$$

Solution

According to Definition 4, proving this limit is logically equivalent to proving that

$$
\text { if } \quad-6<x<-6+\delta \quad \text { then } \quad|\sqrt[8]{6+x}-0|<\varepsilon
$$

for all positive ε. Start by working backwards, looking for a number δ that satisfies $-6<x<-6+\delta$, or $0<x+6<\delta$.

$$
\begin{gathered}
|\sqrt[8]{6+x}-0|<\varepsilon \\
|\sqrt[8]{6+x}|<\varepsilon \\
\sqrt[8]{6+x}<\varepsilon \\
(\sqrt[8]{6+x})^{8}<(\varepsilon)^{8} \\
6+x<\varepsilon^{8}
\end{gathered}
$$

Choose $\delta=\varepsilon^{8}$. Now, assuming that $6+x<\delta$,

$$
\begin{aligned}
|\sqrt[8]{6+x}-0| & =|\sqrt[8]{6+x}| \\
& =\sqrt[8]{6+x} \\
< & \sqrt[8]{\delta} \\
& =\sqrt[8]{\varepsilon^{8}} \\
& =\varepsilon
\end{aligned}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow-6^{+}} \sqrt[8]{6+x}=0
$$

